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Abstract 

Global Climatic changes are being more and more obvious, resulting in massive fluctuations in 

the food availability for the increasing world population because of the abiotic stresses resulted 

from these changes, with drought stress being one of the most serious stresses. Using mineral 

fertilization was introduced as a proposed solution to overcome the food gap resulted from the 

above-mentioned factors, but the negative effects of the mineral fertilization on both soil 

environment and food quality makes it necessary to come out with alternative solutions. Legume 

crops are able to fix atmospheric nitrogen by the symbiosis process, which reduces the need of 

mineral N. Soybean is one of the most important legumes with its high content of protein and oil, 

but is drought-susceptible. An experiment was conducted to investigate the effects of both 

drought stress and mineral N on the physiology and the yield of two soybean cultivars during 

2017 growing season. The results showed that applying N-fertilizer enhanced the physiology of 

soybean plants, especially under drought conditions; yet, high rates of N-fertilizer did not result 
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in better yield. It was concluded that the effects of drought stress on soybean are more serious 

and obvious than of the N fertilization. In addition, adding high rates of N-fertilizer is not always 

favorable, especially with the absence of drought stress conditions. 
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1. Introduction 

Soybean (Glycine max (L.)  Merr.) is an important legume for both human consumption 

and animal feeding because it contains high protein and oil concentrations (Liu et al., 2008); 

soybean provides 60% of human vegetable protein (Rosenthal et al., 1998; Allen et al., 2009), 

moreover, soybean seeds are the highest in protein concentration (about 40%) compared to other 

legumes, and are among the highest in oil concentration (about 20%), with also carbohydrates 

and minerals (Miransari, 2016). Soybean is mostly sown under rain fed scheme, which has put 

this crop, with the current global climatic changes, under drought stress in many regions as 

soybean is reported to be drought-susceptible (Liu et al., 2004; Oh and Komatsu, 2015). As a 

response to drought stress, many morphological and physiological changes are revealed by 

soybean plants, which in part, lead to growing and development fluctuations (Yamaguchi-

Shinozaki and Shinozaki, 2006; Reynolds and Tuberosa, 2008), for example, alleviated stomatal 

closure to reduce water loss, decreased leaf area and deeper and denser roots to improve water 

uptake (Imsande, 1992); drought stress also decreases the number of soybean nodes (Frederick et 

al., 1989) which can lead to reduced plant height. 

The leaf area index (LAI) is the canopy density of a crop population, and has an 

important effect on the final yield (Liu et al., 2008). Normally, shading happens to the lower leaf 

levels and consequently reduces the (LAI), but drought stress decreases the (LAI) more than 

mutual shading does (Liu et al., 2008), resulting in less (LAI) values under drought conditions. 

Plant height shows the ability of the soybean plants to produce more nodes, and 

consequently more flowers, pods and seeds. Many papers reported plant height to decrease when 

drought stress is imposed at different stages of soybean lifecycle (Atti et al., 2004; Mak et al., 

2014). 

Drought inhibits soybean growth and decreases the yield (Sadeghipour and Abbasi, 2012; 

Li et al., 2013; Manavalan et al., 2009), moreover, the stage [for example, during pod formation 

(Sionit and Kramer, 1977), or during seed filling (Turner et al., 2005; Maleki et al., 2013)] at 
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which the drought stress is imposed leads to different yield loss percentage; Ohashi et al. (2006) 

reported 20% yield reduction when soybean was subjected to drought stress during the 

vegetative stages, whereas the reduction reached about 46% when the drought was imposed at 

the flowering stage, which was supported by Ishibashia et al. (2011) who reported flowering 

stage to be the most sensitive stage to drought stress; similar results were introduced by Cui et al. 

(2013). In addition, different soybean genotypes were reported to reveal different yield 

reductions under drought stress conditions (Bellaloui and Mengistu, 2008; He et al., 2016). 

Chlorophyll content is one of the most important physiological traits, as it reflects the 

plant photosynthesis’s, and consequently, yield’s potentials. Drought stress influences the 

chlorophyll content and reduces its value as reported by many researchers (Makbul et al., 2011; 

Hao et al., 2013). Total chlorophyll content and protein synthesis essentially need nitrogen (N) 

which is one of the most important macronutrients for plant growth and yield. Moreover, N is 

also essentially needed for the soybean vegetative growth in order to produce the optimum 

biomass (Fabre and Planchon, 2000; Fageria and Baligar, 2005). Soybean plants have a large N 

harvest index compared to other legumes (Lawn, 1989). 

Biologically-fixed N2 and mineral N are the two main sources of N needed in soybean 

(Salvagiotti et al., 2008). If there is some deficiency in fixed N2 amounts, other sources (mainly 

through N fertilization as a quick and partially-convenient method of providing N to plants) must 

be available (Yinbo et al., 1997; Fabre and Planchon, 2000; Miransari, 2016), or else N from 

leaves will be remobilized to the seeds, which in part, will lead to decreased photosynthesis and 

eventually reduced yield (Salvagiotti et al., 2008). Although applying N fertilizer at appropriate 

rates can enhance seedling growth by becoming established at the beginning of the season until 

the initiation of biological N2-fixation by rhizobia (Ferguson et al., 2010; Seneviratne et al., 

2000), higher amounts of N fertilizer can negatively affect B. japonicum activity and, hence, N2-

fixation (Herridge and Brockwell, 1988; Chen et al., 1992; Ying et al., 1992; Hungria et al., 

2005), yet it is still a better solution than exposing the plants to N-deficiency which can result in 

growth delay, especially if it happens during the vegetative stages (Salvagiotti et al., 2008). 

Therefore, the determination of N fertilizer influence on the growth and the yield of soybean 

crop is very important in order to maximize yield and economic profitability in a particular 

environment (Caliskan et al., 2008). Harper (1974) and Imsande (1992) reported seed yield and 

seed protein content to be enhanced when N2-fixation is associated with N fertilizer, particularly 

during pod filling (Imsande, 1998; Salvagiotti et al., 2008). 
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N fertilizer is very important under abiotic stresses (Caliskan et al., 2008) like drought 

stress (Obaton et al., 1982). The addition of N fertilizer to soybean increased drought tolerance 

as it enhanced the accumulation of both shoot nitrogen and shoot biomass under drought stress 

conditions (Purcell and King, 1996). 

The aim of this experiment was to study the influence of different N fertilizer rates, under two 

drought stress severities, on the morphology, physiology and yield of two soybean cultivars. 

 

2. Materials and Methods 

Two soybean cultivars; Pannonia Kincse (middle maturity group) and Boglár (very early 

maturity group), were sown in Debrecen University's experimental site (Látókép) (N. latitude 47
o
 

33', E. longitude 21
o
 27') on April 26

th
, whereas the harvest was on September 1

st
, 2017. The soil 

type is calcareous chernozem, the average annual precipitation is 565.3 mm, whereas the 

precipitation between sowing and harvesting dates was 213.3 mm (Fig. 1). 

Three N fertilizer rates; 0, 35 and 105 kg ha
-1

 of ammonium nitrate (NH4NO3) (0 N, 35 

N and 105 N, respectively) were applied under three irrigation regimes; severe drought (SD), 

moderate drought (MD) and no drought (ND). Each treatment had four replicates. 

LAI values were recorded using SS1 – SunScan canopy analysis system (Delta- T 

Devices, UK) at three growing stages (Fehr and Caviness, 1977); fourth node V4 (LAI 1), full 

bloom R2 (LAI 2) and full pod R4 (LAI 3). The chlorophyll content was measured using SPAD-

502Plus (Konica Minolta, Japan) at the same previously-mentioned growing stages. Plant height 

was measured manually using a ruler at R2 stage. In every measurement, 10 plants were 

randomly chosen from each plot, and the average was calculated. 

The statistical analysis (2-way ANOVA) was made using SPSS (ver.22) software. 
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Figure 1: The precipitation (mm) and the temperature (C
o
) from the beginning of the year of 

experiment till the harvest date. 

 

3. Results and Discussion 

3.1 Chlorophyll Content 

For cultivar Pannonia Kincse under severe stress conditions (SD), apart from a slight 

decrease in (35 N) treatment at R4 stage compared to (0 N) treatment, the chlorophyll content 

followed the same trend; increasing N fertilizer rates was accompanied by an increase in the 

chlorophyll content. Moreover, (105 N) treatment increased the chlorophyll content significantly 

compared to the other two treatments (0 N and 35 N). Under moderate drought (MD), the 

chlorophyll content increased as N fertilizer rate increased at V4 and R4 stages, however, during 

R2 stage, (35 N) treatment (with an average of 45.52) resulted in the highest chlorophyll content; 

the difference was significant compared to (0 N) treatment (40.48), and insignificant compared 

to (105 N) treatment (40.75). When the drought was waived off, the chlorophyll content was 

better in (35 N) treatment than in (0 N) treatment during the three stages. The high rate of N 

fertilizer resulted in the best chlorophyll content at V4 and R2 stages (43.36 and 43.28, 

respectively), and, on the contrary, in the lowest chlorophyll content (40.66) at R4 stage (table 

1).  

At reproductive stages (R2 and R4), the chlorophyll content was better under moderate 

drought stress compared to severe drought stress when N fertilizer was not applied. Moreover, 

(ND) treatment was the highest in chlorophyll content at both V4 and R2 stages (table 1). 

Hossain et al. (2014) found that total chlorophyll content in the leaves of the studied soybean 

genotypes at vegetative stages (starting from V2 stage) was lower under water deficit than that of 
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well-watered conditions, which is consistent with previous studies on other crops (Cui et al., 

2004; Pagter et al., 2005). 

 

Table 1: Chlorophyll Content (SPAD), LAI, Plant Height (Cm) And Yield (Kg Ha
-1

) Of Pannonia 

Kincse with Different N Fertilizer Rates Under Different Irrigation Regimes 
Trait N rate (kg 

ha-1) 
Severe drought (SD) Moderate drought (MD) No drought (ND) 

Mean F Sig. Mean F Sig. Mean F Sig. 

SPAD1 No N 41.25
b 

17.59 0.00 40.16
 a
 3.73 0.07 42.13

 a
 0.68 0.53 

35 N 41.26
b 

43.25
 a
 42.78

 a
 

105 N 45.96
a
 44.30

 a
 43.36

 a
 

SPAD2 No N 40.11
b 

2.45 0.14 40.48
b 

4.96 0.04 42.12
 a
 0.40 0.68 

35 N 42.48
b 

45.52
a 

43.16
 a
 

105 N 43.52
a 

40.75
ab 

43.28
 a
 

SPAD3 No N 43.36
b 

3.25 0.09 43.54
 a
 0.82 0.47 41.48

 a
 0.51 0.62 

35 N 41.74
b 

45.07
 a
 42.65

 a
 

105 N 44.89
a 

45.16
 a
 40.66

 a
 

LAI1 No N 2.28
b 

7.06 0.01 2.06
ab 

6.05 0.02 1.90
 a
 11.09 0.00 

35 N 2.53
ab 

1.94
b 

2.22
 a
 

105 N 3.05
a 

2.48
a 

2.74
 a
 

LAI2 No N 6.12
b 

4.30 0.05 5.23
 a
 2.19 0.17 5.34

 a
 31.46 0.00 

35 N 6.90
ab 

6.37
 a
 7.06

 a
 

105 N 7.46
a 

7.14
 a
 8.26

 a
 

LAI3 No N 8.50
 a
 0.97 0.42 9.09

 a
 0.66 0.54 9.92

c 
0.37 0.70 

35 N 8.20
 a
 9.52

 a
 10.35

b 

105 N 10.10
 a
 10.04

 a
 10.56

a 

Height No N 66.75
 a
 0.64 0.55 73.75

 a
 2.27 0.16 67.25

 a
 3.98 0.06 

35 N 64.25
 a
 69.00

 a
 73.00

 a
 

105 N 68.00
 a
 74.75

 a
 75.50

 a
 

Yield No N 4335
 a
 0.67 0.54 4220

 a
 0.39 0.69 4746

 a
 0.16 0.86 

35 N 3960
 a
 4325

 a
 4470

 a
 

105 N 4276
 a
 4185

 a
 4526

 a
 

 Same letter indicates no significant difference at .05 level among N rates within a certain trait under certain 

irrigation regime. 

 

For cultivar Boglár, the different irrigation regimes resulted in very similar tendencies; the 

chlorophyll content, under severe drought, gradually increased as the rate of N fertilizer 

increased, with no significant differences at V4 and R2 stages, whereas the difference was 

significant between (105 N) and (0 N) treatments at R4 stage. The same trend was followed 

under moderate stress, except for a slight decrease in (35 N) treatment (36.87) compared to (0 N) 

treatment (36.98) at V4 stage; moreover, the difference was insignificant at V4 and R2 stages, 

whereas it was significantly higher for (105 N) treatment (43.49) compared to (0 N) treatment 

(36.84) at R4 stage. When drought stress was waived off, the chlorophyll content gradually and 

insignificantly increased with increasing N fertilizer rate at all stages (table 2). 

When a high rate of N fertilizer was applied, (ND) treatment resulted in the highest 

chlorophyll content at all stages compared to both severe and moderate drought stress treatments 
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(table 2). Makbul et al., (2011) recorded a significant decrease in chlorophyll content by 28%, 

and Hao et al., (2013) by 31% of drought-stressed soybean compared to control plants. Similar 

results were provided earlier by Atti et al. (2004). 

3.2 Leaf Area Index (LAI) 

The drought did not change the general trend of LAI values for both cultivars with only one 

exception; for Pannonia Kincse, adding a low rate of N fertilizer rate under severe drought stress 

resulted in better LAI values at both V4 and R2 stages compared to (0 N) treatment, however, 

adding a high rate of N fertilizer lead to the highest LAI in all stages; the difference was 

significant compared to (0 N) treatment at both V4 and R2 stages. Under moderate drought, 

again (105 N) treatment resulted in the highest LAI value at all stages; moreover, at V4 stage, the 

difference was significant compared to (35 N) treatment, which resulted in the lowest LAI value. 

Caliskan et al. (2008) reported LAI values to be increased with increasing N rates. At latter 

stages (R2 and R4), LAI value insignificantly increased as N fertilizer rate increased. When 

drought was waived off, LAI values increased as N fertilizer rate increased at all stages; 

moreover, the differences were significant among the three N fertilization treatments at R4 stage 

(table 1). 

For Boglár under (SD) regime, the same tendency of LAI to increase with increased N 

fertilizer rates was noticed; however, the differences were significant only between (105 N) and 

(0 N) treatments at R2 stage. Under both (MD) and (ND) regimes, the trend was even more 

obvious at all stages; the difference between the highest (105 N) rate and the lowest (0 N) rate 

was significant at V4 and R2 stages, whereas it was insignificant at R4 stage. The exact same 

tendency was noticed when the drought was waived off (table 2). Previously, DeMooy et al. 

(1973) and Watanabe et al. (1986) reported that adding N fertilizer before reproductive stages 

enhances growth and LAI. 

At both reproductive stages (R2 and R4), the mean LAI value of Pannonia kincse (middle 

maturity group) (table 1) was higher than that of Boglár (very early maturity group) (table 2) 

indicating that soybean cultivar plays a role in LAI values and in the corresponded yield. Liu et 

al. (2005) reported higher LAI in late maturity genotypes of soybean compared to early and 

middle maturity group genotypes; they concluded that this higher LAI values increased solar 

energy interception, consequently, a greater CO2-fixation ability which resulted in more 

assimilates accumulation. 
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3.3 Plant Height 

For Pannonia Kincse, (35 N) treatment resulted in the shortest plants under drought (whether 

severe or moderate). (105 N) treatment resulted in the tallest plants whether the drought was 

present or waived off. No significant differences were recorded (table 1). 

When N fertilizer was applied (regardless of the rate), the plant height gradually decreased as 

the drought increased (table 1), which is consistent with many previous studies (e.g. Kadhem et 

al., 1985; Demirtas et al., 2010). Hossain et al. (2014) reported that progressive drought stress 

significantly decreased plant height of soybean genotypes. Soybean seedling height decreased 

4.3% under drought stress (Navari-Izzo et al., 1990), similar results were reported at different 

stages (Atti et al., 2004; Demirtas et al., 2010; Garcia et al., 2010; Hao et al., 2013; Mak et al., 

2014). In (0 N) treatment, moderate drought stress resulted in the highest value of plant height 

(73.75 cm), whereas the plants under severe drought stress were the least in height (66.75 cm) 

(table 1). This reduction might be caused as cell swelling, cell wall and synthesis enzymes are 

reduced, consequently, growth and plant height are decreased (Levitt, 1980; Austin, 1989). 

For Boglár, (35 N) treatment resulted in the shortest plants under severe drought, whereas it 

enhanced this trait under both moderate and no drought treatments compared to (0 N) treatment, 

however, (105 N) treatment resulted in the tallest plants under all irrigation regimes with no 

significance recorded (table 2). 

In (35 N) treatment, the plant height under (MD) regime was the highest (71.0 cm), and 

though it was not significantly different from the correspondent value of (ND) (70.0 cm), yet it 

was from under (SD) regime (66.0 cm). In (105 N) treatment, (ND) resulted in better (72.50 cm) 

plant height than did (SD) regime (68.75 cm); however, (MD) regime resulted in the highest 

value (72.75 cm). In (0 N), plant height tended to increase as the available water increased 

(67.00, 67.50 and 68.25 cm under (SD), (MD) and (ND) regimes, respectively), however, the 

increase was insignificant (table 2). Sionit and Kramer, (1977) reported no significant differences 

in plant height under drought stress. 

 

Table 2: Chlorophyll Content (SPAD), LAI, Plant Height (Cm) And Yield (Kg Ha
-1

) Of Boglár 

with Different N Fertilizer Rates Under Different Irrigation Regimes 

Trait 
N rate 

(kg ha
-1

) 

Severe drought (SD) Moderate drought (MD) No drought (ND) 

Mean F Sig. Mean F Sig. Mean F Sig. 

SPAD1 
No N 37.50

 a
 

0.17 0.84 
36.98

 a
 

3.82 0.06 
37.12

 a
 

2.22 0.16 35 N 38.03
 a
 36.87

 a
 38.66

 a
 

105 N 38.12
 a
 42.22

 a
 40.91

 a
 

SPAD2 No N 35.00
 a
 3.99 0.06 34.44

 a
 3.55 0.07 37.92

 a
 0.27 0.77 
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35 N 35.79
 a
 36.82

 a
 38.00

 a
 

105 N 38.90
 a
 38.32

 a
 39.21

 a
 

SPAD3 
No N 40.23

b
 

4.22 0.05 
36.84

b
 

4.65 0.04 
36.50

 a
 

1.71 0.23 35 N 41.49
ab

 42.10
b
 39.23

 a
 

105 N 44.55
a
 43.49

a
 40.13

 a
 

LAI1 
No N 2.14

 a
 

3.59 0.07 
2.02

b
 

6.15 0.02 
1.83

b
 

4.35 0.05 35 N 2.84
 a
 2.23

ab
 2.26

ab
 

105 N 3.06
 a
 2.82

a
 3.29

a
 

LAI2 
No N 4.53

b
 

14.80 0.00 
5.03

b
 

8.18 0.01 
5.09

b
 

4.12 0.05 35 N 6.17
ab

 5.97
ab

 5.95
ab

 

105 N 7.90
a
 7.00

a
 7.27

a
 

LAI3 
No N 7.56

 a
 

2.31 0.15 
8.70

 a
 

1.32 0.32 
9.50

 a
 

0.99 0.41 35 N 8.15
 a
 8.95

 a
 9.60

 a
 

105 N 8.96
 a
 9.43

 a
 10.62

 a
 

Height 
No N 67.00

 a
 

0.37 0.70 
67.50

 a
 

2.69 0.12 
68.25

 a
 

1.55 0.26 35 N 66.00
 a 2

 71.00
 a 1

 70.00
 a 12

 
105 N 68.75

 a
 72.75

 a
 72.50

 a
 

Yield 
No N 3659

 a
 

0.17 0.85 
4576

 a
 

0.89 0.44 
5063

 a
 

1.84 0.21 35 N 3854
 a
 4717

 a
 5379

 a
 

105 N 3753
 a 2

 4957
 a 1

 4697
 a 12

 

 Same letter indicates no significant difference at .05 level among N rates within a certain trait under certain 

irrigation regime. 

 Same number indicates no significant difference at .05 level among irrigation regimes within a row (within 

a certain N fertilizer rate). 

3.4 Yield 

For cultivar Pannonia Kincse, the yield was the highest (4335.0 kg ha
-1

) in (0 N) treatment 

under (SD) regime, however, applying a high rate of N fertilizer resulted in a better yield (4276 

kg ha
-1

) than did the application of a low rate (3960 kg ha
-1

). Under (MD) regime, the addition of 

a high rate of N fertilizer resulted in the lowest yield (4185 kg ha
-1

), whereas the addition of a 

low rate of N fertilizer resulted in the highest yield (4325 kg ha
-1

) (table 1). The reasons for the 

alterations in response to N fertilization are not accurately specified; however, environment and 

stresses, initial soil fertility, nodulation capacity, inoculant presence in soil and pre-sowing 

inoculation, and the timing of N application all have a role (Gault et al., 1984; Peoples et al., 

1995). When drought was waived off, the trend of the yield matched that under severe drought; 

applying a high rate of N fertilizer resulted in a better yield (4526 kg ha
-1

) than did the 

application of a low rate (4470 kg ha
-1

), however, the yield was the highest (4746 kg ha
-1

) when 

no N fertilization was applied (table 1). Kaschuk et al. (2016) concluded that N fertilizer did not 

lead to more yield of two different soybean cultivar groups (determinate and indeterminate) 

whether N application was at sowing time, during reproductive stages or both; it even resulted in 

a slight, insignificant yield loss when it was applied at R2 stage, which was previously reported 

(Hungria et al., 2006; Mendes et al., 2008). Previously, many researchers reported N-fertilizer 
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application to reduce soybean yield (e.g. Welch et al., 1973; Deibert et al., 1979; Hardarson et 

al., 1984; Herridge and Brockwell, 1988; Ying et al., 1992). 

Regardless of N application and rate, the yield was the best when the drought was waived 

off, indicating that the drought stress has more influence on soybean yield than N fertilization 

has (table 1). Ergoa et al. (2018) reported that under water stress, yield decreased 43% due to 

both lower grain number and grain weight compared to controls. 

For Boglár, (35 N) treatment resulted in the highest yield under severe drought stress 

conditions (3854 kg ha
-1

), which exceeded the yield of (105 N) treatment (3753 kg ha
-1

), though 

the difference was insignificant, and (0 N) treatment resulted in the least yield (3659 kg ha
-1

). 

Under moderate drought, the mean yield was increased with increasing N-fertilizer rates; 

however, the differences were insignificant (table 2). Some researchers concluded that N 

fertilizer addition increases yield (Watanabe et al., 1986; Nakano et al., 1987; Norhayati et al., 

1988; Takahashi et al., 1991) by reducing abortions of flowers and pods (Brevedan et al., 1978). 

Chen et al. (1992) reported that every 1 kg ha
-1

 of N fertilizer resulted in extra 1.2 kg ha
-1

 seeds 

under drought stress. Later, Purcell and King (1996) reported that under drought stress, N 

fertilizer increased the yield to (2798 kg ha
-1

) compared to (2373 kg ha
-1

) without N fertilizer; 

they associated this increase with increased seed number because of decreased flower and pod 

abortion. N fertilizer was reported to be very important under abiotic stresses (Caliskan et al., 

2008; Salvagiotti et al., 2008) like drought stress for example (Lyons and Earley, 1952; Obaton 

et al., 1982). Moreover, the addition of N fertilizer to soybean increased drought tolerance as it 

enhanced the accumulation of both shoot nitrogen and shoot biomass under drought stress 

conditions (Purcell and King, 1996). When drought stress was waived off, (35 N) treatment 

resulted in the best yield (5379 kg ha
-1

), and (105 N) treatment resulted in the lowest yield [4697 

kg ha
-1

, compared to 5063 kg ha
-1

 for (0 N) treatment], indicating that high rate of N fertilizer is 

not recommended under (ND) regime for this cultivar (table 2). Under well-watered conditions, 

N (at a rate of 336 kg ha
-1

) decreased yield to (2597 kg ha
-1

) relative to (2728 kg ha
-1

) (Purcell 

and King, 1996). 

Regardless of N application and rate, the yield was better under moderate drought than under 

severe drought (table 2), which is consistent with Dornbos and Mullen (1992) conclusions; 

severe drought stress reduced the seed yield of soybean more than did moderate drought stress. 

The addition of a high rate of N fertilizer under (ND) regime did not result in the highest yield 

(4697 kg ha
-1

, compared to 4957 kg ha
-1

 under moderate drought stress conditions); however, the 
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yield achieved under (SD) regime was significantly lower (3753 kg ha
-1

) (table 2). Many 

previous studies reported a yield reduction under drought stress (e.g. Kokubun, 2011; Karam et 

al., 2005; Dogan et al., 2007; Bajaj et al., 2008; Sincik et al., 2008; Gercek et al., 2009; 

Sadeghipour and Abbasi, 2012; Li et al., 2013), although different timings of drought stress 

application were suggested to be responsible for different yield-loss amounts (Turner et al., 

2005; Demirtas et al., 2010; Maleki et al., 2013). 

Under (SD) regime, the average yield of all N-fertilization treatments was higher (4190 kg 

ha
-1

) for Pannonia Kincse than was for Boglár (3755 kg ha
-1

), whereas it was lower under (MD) 

(4243 compared to 4750 kg ha
-1

, respectively) and (ND) regime (4580 compared to 5046 kg ha
-1

, 

respectively) (tables 1 and 2). Garcia et al. (2010) reported that soybean genotypes significantly 

differ in yield production under drought stress conditions and also within the interaction between 

the drought stress and the genotype; similar conclusions were reported (Brown et al., 1985; 

Bellaloui and Mengistu, 2008; Maleki et al., 2013; He et al., 2016). 

 

4. Conclusions 

Although our experiment was a one-growing-season experiment, some initial conclusions 

could be achieved; in most cases, under different irrigation regimes, the chlorophyll content of 

both cultivars tended to be the highest when a high rate of N fertilizer was applied; this could be 

understood because of the important role of N in photosynthesis formula. Similar conclusions 

were observed regarding LAI. 

Adding N fertilizer to Pannonia Kincse resulted in progressively better plant height with 

progressively better water availability, whereas the same tendency was observed for Boglár 

when no N fertilization was applied; this might be a genotype-dependent response, however, 

further investigation should be conducted. 

Regardless of N application and rate, the yield of Pannonia Kincse was the best when the 

drought was waived off; also for Boglár, the yield was better under moderate drought than under 

severe drought, indicating that drought stress has more influence on soybean yield than N 

fertilization has. Moreover, when drought was waived off, the addition of a high rate of N 

fertilizer did not result in the highest yield, suggesting that it is not always recommended to 

apply high rates of N fertilizer, especially when there is no drought stress hazard; many previous 

papers reported same conclusion. More progress and more precise conclusions are expected after 

extending our experiment over the next growing seasons. 
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As the experiment was conducted in the field, the main limitation was to control the 

timing of drought stress, however, precise information retrieved from the meteorological station 

in the experimental site made it possible to understand the drought conditions within the site. 

 

Acknowledgments 

The publication is supported by the EFOP-3.6.3-VEKOP-16-2017-00008 project. The project is 

co-financed by the European Union and the European Social Fund. 

 

References 

Allen, D.K., Ohlrogge, J.B., Shachar-Hill, Y. (2009). The Role of Light in Soybean Seed Filling 

Metabolism. The Plant Journal 58, 220-234. https://doi.org/10.1111/j.1365-

313X.2008.03771.x 

Atti, S., Bonnell, R., Smith, D., Prasher, S., (2004). Response of an Indeterminate Soybean 

{Glycine Max (L.) Merr} to Chronic Water Deficit during Reproductive Development 

under Greenhouse Conditions. Canadian Water Resources Journal / Revue canadienne 

des ressources hydriques. 29(4), 209-222. 

Austin, R.B., (1989). Maximizing crop production in water limited environments. 13-25. in: F. 

W. G. Baker. Drought resistance in cereals. CAB International, Wallingford, England 

2220. 

Bajaj, S., Chen, P., Longer, D.E., Shi, A., Hou, A., Ishibashi, T., Brye, K.R. (2008). Irrigation 

and planting date effects on seed yield and agronomic traits of early-maturing Soybean. J. 

Crop Improv. 22 (1), 47–65. https://doi.org/10.1080/15427520802042937 

Bellaloui, N., Mengistu, A. (2008). Seed composition is influenced by irrigation regimes and 

cultivar differences in soybean. Irrig Sci. 26, 261–268. https://doi.org/10.1007/s00271-

007-0091-y 

Brevedan, R.E., Egli, D.B., Leggett, J.E. (1978). Influence of N nutrition on flower and pod 

abortion and yield of soybeans. Agron. J. 70, 81-

84.  https://doi.org/10.2134/agronj1978.00021962007000010019x 

Brown, E., Brown, D., Caviness, C. (1985). Response of selected soybean cultivars to soil 

moisture deficit. Agronomy Journal 77(2), 274-

278.  https://doi.org/10.2134/agronj1985.00021962007700020022x 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              27 

Caliskan, S., Ozkaya, I., Caliskan, M.E., Arslan, M. (2008). The effects of nitrogen and iron 

fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-

type soil. Field Crops Research 108, 126–132. https://doi.org/10.1016/j.fcr.2008.04.005 

Chen, Z., MacKenzie, A.F., Fanous, M.A. (1992). Soybean nodulation and grain yield as 

influenced by N-fertilizer rate, plant population density and cultivar in southern Quebec. 

Can. J. Plant Sci. 72, 1049-1056. https://doi.org/10.4141/cjps92-131 

Cui, W., Chang, Z., Li, N. (2013). Effect of drought stress on physiology ecology and yield of 

soybean. Journal of Water Resources and Water Engineering, 24, 20–24. (in Chinese). 

Cui, Y.Y., Pandey, D.M., Hahn, E.J., Paek, K.Y. (2004). Effect of drought on physiological 

aspects of Crassulacean acid metabolism in Doritaenopsis. Plant Sci. 167, 1219–1226. 

https://doi.org/10.1016/j.plantsci.2004.06.011 

Deibert, E.J., Bijeriego, M., Olson, R.A. (1979). Utilization of l5N fertilizer by nodulating and 

nonnodulating soybean isolines. Agron. J. 71, 717-723. 

https://doi.org/10.2134/agronj1979.00021962007100050006x 

Demirtas, Ç.D., Yazgan, S., Candogan, B.C., Sincik, M., Büyükcangaz, H., Göksoy, A.T. 

(2010). Quality and yield response of soybean (Glycine max (L.) Merrill) to drought 

stress in sub–humid environment. African Journal of Biotechnology 9(41), 6873-6881, 

11. 

DeMooy, C.J., Pesek, J., Spaldon, E. (1973). Mineral nutrition of soybeans. In: ed. B.E. 

Caldwell, Soybeans: Improvement, Production, and Uses. Agronomy Series. ASA 

Publishers, Madison, pp. 276-352. 

Dogan, E., Kirnak, H., Copur, O. (2007). Deficit irrigations during soybean reproductive stages 

and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops 

Res. 103 (2), 154–159. https://doi.org/10.1016/j.fcr.2007.05.009 

Dornbos, D.L., Mullen, R.E. (1992). Soybean seed protein and oil contents and fatty acid 

composition adjustments by drought and temperature. Journal of the American Oil 

Chemists' Society 69(3), 228-231. https://doi.org/10.1007/BF02635891 

Ergo, V.V., Lascano, R., Vegad, C.R.C., Parola, R., Carrera, C.S. (2018). Heat and water 

stressed field-grown soybean: A multivariate study on the relationship between 

physiological-biochemical traits and yield. Environmental and Experimental Botany 148, 

1–11. https://doi.org/10.1016/j.envexpbot.2017.12.023 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              28 

Fabre, F., Planchon, C. (2000). Nitrogen nutrition, yield and protein content in soybean. Plant 

Science 152, 51–58. https://doi.org/10.1016/S0168-9452(99)00221-6 

Fageria, N., Baligar, V. (2005). Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 

88, 97–185. https://doi.org/10.1016/S0065-2113(05)88004-6 

Fehr, W.R., Caviness, C.E. (1977). Stages of soybean development. Special Report. 87. 

http://lib.dr.iastate.edu/specialreports/87.  

Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M-H., Lin, Y-H., Reid, D.E., Gresshoff, P.M. 

(2010). Molecular analysis of legume nodule development and autoregulation. J Integr. 

Plant Biol. 52, 61–76. https://doi.org/10.1111/j.1744-7909.2010.00899.x 

Frederick, J.R., Woolley, J.T., Hesketh, J.D., Peters, D.B. (1989). Phenological Responses of Old 

and Modern Soybean Cultivars to Air Temperature and Soil Moisture Treatment. Field 

Crops Research 21, 9-18. https://doi.org/10.1016/0378-4290(89)90036-1 

Garcia, A.G., Persson, T., Guerra, L.C., Hoogenboom, G. (2010). Response of soybean 

genotypes to different irrigation regimes in a humid region of the southeastern USA. 

Agricultural Water Management 97, 981–987. 

https://doi.org/10.1016/j.agwat.2010.01.030 

Gault, R.R., Chase, D.L., Banks, L.W., Brockwell, J. (1984). Remedial measures to salvage 

unnodulated soybean crops. J. Aust. Inst. Agric. Sci., 50, 244-246. 

Gercek, S., Boydak, E., Okant, M., Dikilitas, M. (2009). Water pillow irrigation compared to 

furrow irrigation for soybean production in a semi-arid area. Agric. Water Manage. 96 

(1), 87–92. https://doi.org/10.1016/j.agwat.2008.06.006 

Hao, L., Wang, Y., Zhang, J., Xie, Y., Zhang, M., Duan, L., Li, Z. (2013). Coronatine enhances 

drought tolerance via improving antioxidative capacity to maintaining higher 

photosynthetic performance in soybean. Plant Science 210, 1–9. 

https://doi.org/10.1016/j.plantsci.2013.05.006 

Hardarson, G., Zapata, F., Danso, S.K.A. (1984). Effect of plant genotype and nitrogen fertilizer 

on symbiotic nitrogen fixation by soybean cultivars. Plant and Soil 82, 397-

405.  https://doi.org/10.1007/BF02184277 

Harper, J.E. (1974). Soil and symbiotic nitrogen requirements for optimum soybean production, 

Crop Sci. 14, 255–260. https://doi.org/10.2135/cropsci1974.0011183X001400020026x 

He, J., Du, Y-L., Wang, T., Turner, N.C., Yang, R-P., Jin, Y., Xi, Y., Zhang, C., Cui, T., Fang, 

X-W., Li, F-M. (2016). Conserved water use improves the yield performance of soybean 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              29 

(Glycine max (L.) Merr.) under drought. Agric. Water Manage. 

http://dx.doi.org/10.1016/j.agwat.2016.07.008. 

Herridge, D.F., Brockwell, J. (1988). Contributions of fixed nitrogen and soil nitrate to the 

nitrogen economy of irrigated soybean. Soil Biol. Biochem., 20, 711-717. 

https://doi.org/10.1016/0038-0717(88)90156-3 

Hossain, Md. M., Liu, X., Qi, X., Lam, H-M., Zhang, J. (2014). Differences between soybean 

genotypes in physiological response to sequential soil drying and rewetting. The Crop 

Journal 2, 366 – 380. https://doi.org/10.1016/j.cj.2014.08.001 

Hungria, M., Franchini, J., Campo, R., Graham, P. (2005). The importance of nitrogen fixation to 

soybean cropping in South America. In: Werner, D., Newton, W. (Eds.), Nitrogen 

Fixation in Agriculture, Forestry, Ecology, and the Environment. Springer, Netherlands, 

pp. 25–42. https://doi.org/10.1007/1-4020-3544-6_3 

Hungria, M., Franchini, J.C., Campo, R.J., Crispino, C.C., Moraes, J.Z., Sibaldelli, R.N.R., 

Mendes, I.C., Arihara, L. (2006). Nitrogen nutrition of soybean in Brazil: contributions of 

biological N2fixation and N fertilizer to grain yield. Can. J.Plant Sci. 86, 927–939. 

https://doi.org/10.4141/P05-098 

Imsande, J. (1992). Agronomic characteristics that identify high yield, high protein soybean 

genotypes, Agron. J. 84, 409–414. 

https://doi.org/10.2134/agronj1992.00021962008400030012x 

Imsande, J. (1998). Nitrogen deficit during soybean pod filling and increased plant biomass by 

vigorous N2 fixation, Eur. J. Agron. 8, 1–11. https://doi.org/10.1016/S1161-

0301(97)00004-X 

Ishibashi, Y., Yamaguchi, H., Yuasa, T., Iwaya-Inoue, M., Arima, S., Zheng, S. (2011). 

Hydrogen peroxide spraying alleviates drought stress in soybean plants. Journal of Plant 

Physiology, 168, 1562–1567. https://doi.org/10.1016/j.jplph.2011.02.003 

Kadhem, F.A., Specht, J.E., Williams, J.H. (1985). Soybean irrigation serially timed during 

stages R1 to R6. II. Yield component responses. Agron. J. 77, 299-304. 

https://doi.org/10.2134/agronj1985.00021962007700020027x https://doi.org/10.2134/agr

onj1985.00021962007700020026x 

Karam, F., Masaad, R., Sfeir, T., Mounzer, O., Rouphael, Y. (2005). Evapotranspiration and seed 

yield of field grown soybean under deficit irrigation conditions. Agric. Water Manage. 

75, 226-244. https://doi.org/10.1016/j.agwat.2004.12.015 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              30 

Kaschuk, G., Nogueira, M.A., De Luca, M.J, Hungria, M. (2016). Response of determinate and 

indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole 

inoculation with Bradyrhizobium. Field Crop Res 195, 21–27. 

https://doi.org/10.1016/j.fcr.2016.05.010 

Kokubun, M. (2011). Physiological Mechanisms Regulating Flower Abortion in Soybean, 

Soybean - Biochemistry, Chemistry and Physiology, Prof. Tzi-Bun Ng (Ed.), ISBN: 978-

953-307-219-7, InTech, Available from: http://www.intechopen.com/books/soybean-

biochemistry-chemistry-and-physiology/physiologicalmechanisms-regulating-flower-

abortion-in-soybean. https://doi.org/10.5772/15694 

Lawn, R.J. (1989). Agronomic and physiological constraints to the productivity of tropical grain 

legumes and prospects for improvement. Exp. Agric. 25, 509–528. 

https://doi.org/10.1017/S0014479700015143 

Levitt, J. (1980). Responses of plants to environmental stresses. Academic Press. New York and 

London. 697 pp. 

Li, D., Liu, H., Qiao, Y., Wang, Y., Cai, Z., Dong, B., Shi, Ch., Liu, Y., Li, X., Liu, M. (2013). 

Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean 

(Glycine max (L.) Merr.) under drought stress. Agricultural Water Management 129, 

105–112. https://doi.org/10.1016/j.agwat.2013.07.014 

Liu, F., Andersen, M. N., Jacobsen, S-E., Jensen, Ch.R. (2005). Stomatal control and water use 

efficiency of soybean (Glycine max (L.) Merr.) during progressive soil drying. 

Environmental and Experimental Botany 54, 33–40. 

https://doi.org/10.1016/j.envexpbot.2004.05.002 

Liu, F., Jensen, Ch.R., Andersen, M.N. (2004). Drought stress effect on carbohydrate 

concentration in soybean leaves and pods during early reproductive development: its 

implication in altering pod set. Field Crops Research 86, 1–13. 

https://doi.org/10.1016/S0378-4290(03)00165-5 

Liu, X., Jin, J., Wang, G., Herbert, S.J. (2008). Soybean yield physiology and development of 

high-yielding practices in Northeast China. Field Crops Research 105, 157–171. 

https://doi.org/10.1016/j.fcr.2007.09.003 

Lyons, J.C., Earley, E.B. (1952). The effect of ammonium nitrate applications to field soils on 

nodulation, seed yield, and nitrogen and oil content of the seed of soybeans. Soil Sci. 

Amer. Proc. 16, 259-263. https://doi.org/10.2136/sssaj1952.03615995001600030008x 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              31 

Mak, M., Babla, M., Xu, S. C., O’Carrigan, A., Liu, X.H., Gong, Y.M., Holford, P., Chen, Z.H. 

(2014). Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced 

decrease in photosynthesis and stomatal closure in soybean. Environmental and 

Experimental Botany 98, 1– 12. https://doi.org/10.1016/j.envexpbot.2013.10.003 

Makbul, S., Saruhan Guler, N., Durmus, N., Guven, S. (2011). Changes in anatomical and 

physiological parameters of soybean under drought stress. Turk. J. Bot. 35, 369-377. 

Maleki, A., Naderi, A., Naseri, R., Fathi, A., Bahamin, S. Maleki, R. (2013). Physiological 

Performance of Soybean Cultivars under Drought Stress. Bull. Env. Pharmacol. Life Sci. 

2(6), 38-44. 

Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P., Nguyen, H.T. (2009). Physiological and 

molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 50, 

1260-1276. https://doi.org/10.1093/pcp/pcp082 

Mendes, I.C., Reis-Junior, F.B., Hungria, M., Sousa, D.M.G., Campo, R.J. (2008). Adubac¸ ão 

nitrogenada suplementar tardia em soja cultivada em latossolos doCerrado. Pesq. 

Agropec. Bras. 43, 1053–1060. https://doi.org/10.1590/S0100-204X2008000800015 

Miransari, M. (2016). Soybean Production and N Fertilization. In Mohammad Miransari (Eds.), 

Abiotic and Biotic Stresses in Soybean Production, Soybean Production Volume 1. (241-

260). Chippenham: Nikki Levy. https://doi.org/10.1016/B978-0-12-801536-0.00005-

0 https://doi.org/10.1016/B978-0-12-801536-0.00011-6 

Nakano. H., Kuwahara, M., Watanabe, I., Tabuchi, K., Naganoma, H., Higashi, T., Hirata, Y. 

(1987). Supplemental nitrogen fertilizer to soybeans. II. Effect of application rate and 

placement on seed yield and protein yield. Jpn. Crop Sci., 56, 329-336. (in Japanese with 

English summary). https://doi.org/10.1626/jcs.56.329 

Navari-Izzo, F., Vangioni, N., Quartacci, M.F. (1990). Lipids of soybean and sunflower 

seedlings grown under drought conditions. Phytochemistry 29(7), 2119-2123. 

https://doi.org/10.1016/0031-9422(90)83018-V 

Norhayati, M., Mohd Noor, S., Chong, K., Faizah, A.W., Herridge, D.F., Peoples, M.B., 

Bergersen, F.J. (1988). Adaptation of methods for evaluating N2 fixation in food legumes 

and legume cover crops. Plant and Soil 108, 143-150. 

https://doi.org/10.1007/BF02370109 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              32 

Obaton, M., Miquel, M., Robin, P., Conejero, G., Domenach, A., Bardin, R. (1982). Influence du 

deficit hydrique sur l'activite nitrate reductase et nitrogenase chez le Soja (Glycine max 

L. Merr. cv. Hodgson). C.R. Acad. Sci. Paris. 294, 1007-1012. 

Oh, M., Komatsu, S. (2015). Characterization of proteins in soybean roots under flooding and 

drought stresses. Journal of Proteomics 114, 161–181. 

https://doi.org/10.1016/j.jprot.2014.11.008 

Ohashi, Y., Nakayama, N., Saneoka, H., Fujita, K. (2006). Effects of drought stress on 

photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean 

plants, Biol. Plant. 50, 138–141. https://doi.org/10.1007/s10535-005-0089-3 

Pagter, M., Bragato, C., Brix, H. (2005). Tolerance and physiological responses of Phragmites 

australis to water deficit. Aquat. Bot. 81, 285–299. 

https://doi.org/10.1016/j.aquabot.2005.01.002 

Peoples, M.B., Herridge, D.F., Ladha, J.K. (1995). Biological nitrogen fixation: an efficient 

source of nitrogen for sustainable agricultural production. Plant and Soil, 174, 3-

28.  https://doi.org/10.1007/BF00032239 

Purcell, L.C., King, C.A. (1996). Drought and Nitrogen Source Effects on Nitrogen Nutrition, 

Seed Growth and Yield in Soybean. J. Plant Nutr. 19, 969-

993.  https://doi.org/10.1080/01904169609365173 

Reynolds, M., Tuberosa, R. (2008). Translational research impacting on crop productivity in 

drought-prone environments Curr. Opin. Plant Biol., 11 (2), 171-179. 

https://doi.org/10.1016/j.pbi.2008.02.005 

Rosenthal, A., Pyle, D.L., Niranjan, K. (1998). Simultaneous Aqueous Extraction of Oil and 

Protein from Soybean: Mechanisms for Process Design. Food and Bioproducts 

Processing 76, 224-230. https://doi.org/10.1205/096030898532124 

Sadeghipour, O., Abbasi, S. (2012). Soybean Response to Drought and Seed Inoculation. World 

Applied Sciences Journal 17(1), 55-60. 

Salvagiotti, F., Cassman, K.G., Specht, J.E., Walters, D.T., Weiss, A., Dobermann, A. (2008). 

Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops 

Research 108, 1–13. https://doi.org/10.1016/j.fcr.2008.03.001 

Seneviratne, G., Holm, L.H.J., Ekanayake, E.M.H.G. (2000). Agronomic benefits of rhizobial 

inoculant use over nitrogen fertilizer application in tropical soybean. Field Crops 

Res., 68, 199-203. https://doi.org/10.1016/S0378-4290(00)00123-4 



LIFE: International Journal of Health and Life-Sciences            
ISSN 2454-5872  
 

Available Online at: http://grdspublishing.org/                                                                                                              33 

Sincik, M., Candogan, B.N., Demirtas, C., Büyükacangaz, H., Yazgan, S., Gksoy, A.T. (2008). 

Deficit irrigation of soybean [Glycine max (L.) Merr.] in a sub-humid climate. J. Agron. 

Crop Sci. 194, 200–205. https://doi.org/10.1111/j.1439-037X.2008.00307.x 

Sionit, N., Kramer, P.J. (1977). Effect of water stress during different stages of growth of 

soybean. Agron. J. 69, 274–278. 

https://doi.org/10.2134/agronj1977.00021962006900020018x 

Takahashi, Y., Chinushi, T., Nagumo, Y., Nakano, T., Ohyama, T. (1991). Effect of deep 

placement of controlled release nitrogen fertilizer (coated urea) on growth, yield, and 

nitrogen fixation of soybean plants. Soil. Sci. Plant Nutr. 37, 223-231. 

https://doi.org/10.1080/00380768.1991.10415032 

Turner, N.C., Davies, S.L., Plummer, J.A., Siddique, K.H.M. (2005). Seed Filling in Grain 

Legumes under Water Deficits, with Emphasis on Chickpeas. Advances in Agronomy 87, 

211-250. https://doi.org/10.1016/S0065-2113(05)87005-1 

Watanabe, I., Tabuchi, K., Nakano, H. (1986). Response of soybean to supplemental nitrogen 

after flowering. In: ed. S. Shanmugasundaram, E.W. Sulzberger and B.T. Mclean, 

Soybean in Tropical and Subtropical Cropping Systems. AVRDC, Shanhua, Taiwan, pp. 

301-308.  

Welch, L.F., Boone, L.V., Chambliss, C.G., Christiansen, A.T., Mulvaney, D.L., Oldham, M.G., 

Pendleton, J.W. (1973). Soybean yields with direct and residual nitrogen fertilization. 

Agron. J. 65, 547-550. https://doi.org/10.2134/agronj1973.00021962006500040007x 

Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Transcriptional regulatory networks in cellular 

responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol.57, 781-

803. https://doi.org/10.1146/annurev.arplant.57.032905.105444 

Yinbo, G., Peoples, M.B., Rerkasem, B. (1997). The effect of N fertilizer strategy on N 2 

fixation, growth and yield of vegetable soybean. Field Crops Research 51, 221-229. 

https://doi.org/10.1016/S0378-4290(96)03464-8 

Ying, J., Herridge, D.F., Peoples, M.B., Rerkasem, B. (1992). Effect of N fertilization on N, 

fixation and N balances of soybean grown after lowland rice. Plant and Soil 147, 235-

242. https://doi.org/10.1007/BF00029075 


