
MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 1

Nacional et al., 2019

Volume 5 Issue 3, pp.01-14

Date of Publication: 15th November 2019

DOI- https://dx.doi.org/10.20319/mijst.2019.53.0114

This paper can be cited as: Nacional, T., Niinimaki, M., & Heikkurinen, M., (2019). RDF Databases –

Case Study and Performance Evaluatıon. MATTER: International Journal of Science and Technology,

5(3), 01-14.

This work is licensed under the Creative Commons Attribution-Non Commercial 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

RDF DATABASES – CASE STUDY AND PERFORMANCE

EVALUATION

Tony Nacional

School of Business and Technology Webster University Thailand, Bangkok, Thailand
nacionalm@webster.ac.th

Marko Niinimaki

School of Business and Technology Webster University Thailand, Bangkok, Thailand
niinimakim@webster.ac.th

Matti Heikkurinen

PROCESS, Ludwig-Maximilians-Universität, Munich, Germany

heikku@nm.ifi.lmu.de

Abstract

The Resource Description Framework (RDF) data presentation model and the SPARQL query

language have been the core of the semantic web technologies since the early 2000’s. In this

article, we evaluate three RDF storage technologies. Our motivation is to find a storage solution

that can be used to process “big data” RDF sets. Our method is based on measuring query

response times with large samples (hundreds of thousands of RDF documents, millions of RDF

statements). We find that all the proposed technologies provide much better performance than

querying RDF data stored in files. However, with 300 000 documents, even with the fastest

technology, an aggregation query still lasts more than 100 seconds in our environment. As a

further performance improvement, we test the same data and queries with MongoDB, demonstrate

its performance (10 seconds instead of 100) and scalability (up to 1000 000 documents). However,

http://grdspublishing.org/journals-PEOPLE-home
file://server/grdsnew/1.%20EURASIA%20RESEARCH/PUBLICATION/1.%20CONFERENCES/1914%20Bangkok%20July/2.%20Registered/STRA/ERCICSTR1914060-%209%25%20RPR/nacionalm@webster.ac.th
file://server/grdsnew/1.%20EURASIA%20RESEARCH/PUBLICATION/1.%20CONFERENCES/1914%20Bangkok%20July/2.%20Registered/STRA/ERCICSTR1914060-%209%25%20RPR/niinimakim@webster.ac.th
file://server/grdsnew/1.%20EURASIA%20RESEARCH/PUBLICATION/1.%20CONFERENCES/1914%20Bangkok%20July/2.%20Registered/STRA/ERCICSTR1914060-%209%25%20RPR/heikku@nm.ifi.lmu.de

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 2

despite its benefits we must note that because of its data presentation and query limitations,

MongoDB probably cannot serve as a generic storage for all kinds of RDF documents.

Keywords

RDF, Database, noSQL, Benchmarking, Big Data, Query Performance

1. Introduction

The Resource Description Framework (RDF) was originally developed for describing

resources on the Web. This is done by making statements about Web resources (pages) and things

that can be identified on the Web, like products in on-line shops (W3C, 2014). Using RDF, one

identifies things using Uniform Resource Identifiers, or URIs, and describes resources by issuing

statements in terms of simple properties and property values.

An RDF statement is a triple of subject, predicate, and object. The statement asserts that

some relationship, indicated by the predicate, holds between the things denoted by the subject and

the object of the triple. As an example of a resource on the Web, we can have the following

statement. The web page whose URI is “http://www.example.org/xyz.html” (subject) has a creator

(predicate) that is N.N. (object). As an example of a thing outside of the Web, but referred to it by

an URI, we can consider the following: A person, Magnus Carlsen, referred to by the URI

“<http://www.wikidata.org/entity/Q106807>” (subject) has a date of birth (predicate) 30

November 1990 (object). Both subject and object can be blank nodes that represent unknown or

undetermined values. Figure 1 (from (W3C, 2004)) shows an illustration of a set of RDF

statements about a person as a directed graph. If the email address was unknown, it would be

represented as a blank node illustrating that there is an email address but we do not know it.

The SPARQL language (W3C, 2008) was designed for querying RDF documents. Intuitively, we

can see an SPARQL query as a template containing blank nodes. The query evaluation process

matches the blank nodes with actual data (if possible). For instance in the query “SELECT ?MCdb

WHERE {<http://www.wikidata.org/entity/Q106807>

<http://www.wikidata.org/prop/direct /P569> ?MCdb . }” the blank node

“?MCdb” will be matched with the actual date. P569 in the query is the property “date of birth”.

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 3

Figure 1: An RDF Graph from W3C RDF Primer

Since RDF graphs express information as subject-predicate-object, there is a terse text

format called N-triples (W3C, 2014). However, graphs are normally stored in an XML format,

often in files. It is possible to use command line tools to issue SPARQL queries using such files

as sources, but with large amounts of data this will become impractical. Some of the early attempts

to deal with large data included an RDF query API that could be used persistent RDF graph data

stored in a BerkeleyDB database (Miller, Seaborne, & Reggior, 2002). Later, “native” RDF

databases, among them many commercial solutions have appeared (Faye & Curé, 2012). One of

the early databases was Sesame (Broekstra, Kampman, & Van Harmelen, 2002) that later

developed into a framework called RDF4J. In general, databases that store RDF data in the subject-

predicate-object format are called triple-stores (Levandoski & Mokbel, 2009). Levandoski and

Mokbel (Levandoski & Mokbel, 2009) discuss popular approaches for implementing a storage for

a triple-store. They mention a triple-store schema, where each triple is stored in a three-column

table in a relational database, and a property table model where RDF properties are stored as n-ary

table columns.

In this paper, we evaluate the performance and scalability of three different RDF storage

solutions. One of the is based on BerkeleyDB and two others are “native RDF” commercial

products. The other one of the products is intended for enterprise data integration and the other

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 4

one is seen as more generic. The generic one is based on Sesame/RDF4J. In our measurement

section, we call these products “Integration” and “Sesame based”, respectively.

In related research, Arenas et al (Arenas, Gutierrez, & Pérez, 2009) present the semantics

of RDF and the complexity of evaluating SPARQL expressions. Morsey at al (Morsey, Lehmann,

Auer, & Ngomo, 2009) present DBPedia datasets and queries that can be used for query

performance analysis. Unfortunately, the tool is no longer available, but an earlier benchmark by

Becker (Becker, 2008) used similar data and five queries such as (i) query all information about a

specific subject (ii) “two degrees of separation” (iii) unconstrained query about specific types (iv-

v) combining web and GPS information in two cities. Other RDF query benchmark tools are

discussed by Schmidt et al. (Schmidt, Schallhorn, Lausen, & Pinkel, 2009), and they additionally

develop their own benchmark. Vicknair et al. (Vicknair, et al., 2010) compare features of a

relational database management system with a graph database that is not based on RDF.

Lindemann et al (Lindemann, Schmidt, Schrader, & Keune, 2009) emphasize the benefits of using

RDF in representation of medical data. Our dataset has earlier been used in a XML database

performance evaluation (Niinimaki, Heikkurinen, & Schmidt, 2019) but converting the data into

an RDF form will allow us combine the data with rigorous ontologies (see (Noy, Rubin, & Musen,

2004). The main contribution of our paper is to test RDF databases with data from medical articles

and compare the retrieval times with retrieval times of similar data in other types of databases.

This research is a part of our long-term project where we build tools for accessing data from large

data sets (Niinimaki & Thanisch, 2019), (Niinimaki & Niemi, 2009).

Our sample RDF documents, hardware and software environments and methods of

measurement are introduced in Section 2. The performance results are presented in Section 3.

Additionally, we discuss the performance of RDF access with two other technologies, XML

databases and MongoDB in Section 4. Finally, Section 5 contains a summary, notes about non-

RDF graph databases, and items for future research.

 2. The Environment and Data

We have built and executed our query performance benchmarking in a relatively typical

higher end Linux environment. The hardware is a 24-core Xeon server (E5-2620 v2 @ 2.10 GHz)

with 32 GB memory running the Debian 8 distribution of the Linux operating system. Our native

RDF databases are Java-based, and the Java version in the computer is 1.8.0_66.

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 5

Our data set consists of hundreds of thousands of XML documents downloaded from the U.S.

National Institute of Health’s PubMed collection of medical articles (Steinbrook, 2005). The

articles (without images) are available in compressed files at ftp://ftp.ncbi.nlm.nih.gov/pub/pmc.

The size of the compressed files is currently about 50 GB, and the uncompressed size about 140

GB. At the time of the writing, the files contained 2.1 million articles and thus the average size of

an XML file was 67 kilobytes. The earliest article in the collection is from 16101, but almost 90%

of the articles are from 2000 or later. Most of the articles contain both the metadata and the textual

contents in the JATS (Journal Article Tag Suite) XML format. For details about JATS, see

(Donohoe, Sherman, & Mistry, 2015). The XML documents were converted into an RDF format

using a JATS-to-RDF stylesheet.

We have used four document sample sets for our measurements: a set of 100 000, 200 000,

300 000, and one million documents. The number of RDF statements in these sets is 7.6 million,

17.5 million, 27.6 million and 124 million, respectively.

The queries that we tested with the sets are as follows:

 Q1: Print the publication date (actually only the publication year is recorded as a date) of each

article. The corresponding SPARQL expression is select ?a ?y { ?a

<http://purl.org/dc/elements/1.1/date> ?y }

 Q2: Print article information if the article contains the word “genitalia” anywhere. select

?s ?p ?o WHERE { ?s ?p ?o. FILTER (regex(?o,'genitalia')) }

 Q3: Print top 100 articles that have been cited by other articles, and how many times they have

been cited. select ?c (count(?c) AS ?total) { ?a

<http://purl.org/dc/terms/references> ?c } group by ?c order by

?total limit 100

For curious readers, the most frequent year of publication was 2016, the word “genitalia”

appeared in 3634 articles (of 1 million), and the most cited article was “Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs”. The 1610 article is “The Whole

Aphorismes of Great Hippocrates”. Some documents contain years earlier than 1610 in the

publication information, but they seem to be mistakes and years based on the Islamic calendar.

http://grdspublishing.org/journals-PEOPLE-home
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/terms/references

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 6

3. Measurements and Results

We timed the execution time of each query with the standard Linux “time” command. Each

measurement was repeated several (usually 10) times. Other than the usual operating system tools,

there were no programs executing in the computer during the measurements.

RDF frameworks and tools can evaluate queries even when the RDF source is plain files.

With large amounts of data this, however, becomes impractical. For example, evaluating query 1

(list the publication year of each article) when each article is stored in an RDF file takes about 2.8

seconds per file, making this method unusable in general. This is mainly because the RDF tool

needs to parse each file before evaluating the query. When using a database, the data has been

already parsed and organized. All the databases that we have measured (below) perform much

better than a file-based approach.

We have tested the performance with datasets containing RDF documents and loading them

to the database products that we tested. With Python RDFlib, we first wrote a Python program that

reads the RDF contents from files and stores it in a BerkeleyDB using its API. The queries are

then executed using Python programs that build a graph from the database contents and then

evaluate the query. Practically this means that each query evaluation is with a “cold start” since

the data is always read before the query is evaluated. We can test the database opening time by

“query 0” that just opens the database and exits.

The data integration oriented commercial RDF runs only as a client/server application. To

imitate a “cold start”, we stop and start the database server after each query. The database startup

time is shown as “query 0” result. For completeness, for this product, we have included numbers

of “warm start”. These were measured by starting the database, running the queries 10 times in

sequence and calculation the averages of query times. As an interesting detail (acknowledged by

the software developers, too), the complex “most cited articles” query was faster after a cold start.

The Sesame based commercial RDF database has no limitations in terms of number of

statements, and it has a command line tool that opens the database and then executes the query. A

“query 0” is used to test the database opening time similarly to Python RDFlib.

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 7

The number of RDF statements in each of our datasets is as follows:

100k 7 581 887

200k 17 551 293

300k 27 652 173

1M 124,319,278

Results (query times in seconds) for each of the database products are shown in Table 1,

and an illustration of the results in Fig 2.

Table 1: Query Times in Seconds

Python RDFlib

with

BerkeleyDB:

Q0 Q1 Q2 Q3

100k 23.8 55.1 2349.1 60.4

200k 53.5 102.4 5357.3 284.0

300k 95.2 175.4 8182.7 539.2

Integration, cold

start

100k 6.1 5.6 19.4 3.9

200k 7.1 7.1 40.0 11.5

300k 8.0 8.5 59.6 24.6

1M 9.6 25.2 221.0 58.4

Integration,

warm start

100k 3.8 18.1 3.9

200k 5.6 36.6 11.5

300k 6.8 57.6 24.6

1M 22.2 220.4 58.

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 8

Sesame-based

100k 6.1 6.7 32.8 10.6

200k 6.5 7.5 66.7 43.4

300k 6.8 8.4 103.9 70.7

1M 7.3 14.8 507.6 -

Figure 2: Query Times in Seconds, Logarithmic Scale

For completeness, we present the standard deviations of the 300k measurements for Q2 below.

Python RDFlib Integration, warm start Sesame

229.6 1.32 8.93

We can see that the text matching query (Q2) took most time with all the databases. This

is probably because RDF databases are very seldom optimized for textual search. The native RDF

1 10 100 1000 10000

q1-
berkeley

q1-integ

q1-sesame

q2-
berkeley

q2-integ

q2-sesame

q3-
berkeley

q3-integ

q3-sesame

Query times in seconds, log scale, RDF databases

300k 200k 100k

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 9

databases were (not surprisingly) generally faster than Python with a BerkeleyDB back-end. Both

commercial RDF databases were able to process queries even with data of 1 million documents.

However, with that amount of data, query Q3 was too hard for the Sesame-based database: the

database query engine failed after 1 hour 14 minutes due to heap memory problem (we had

allocated 8 GB maximum heap). In the era of “big data”, a collection of one million RDF

documents (or 124 million triples) is not exceptionally large – Oracle has tested an RDF storage

with 475.6 billion triples (Oracle, 2016). In order to manage larger amounts of data in our

environment, we shall compare the triple-store technology with other approaches in the next

section.

4. Comparison with Other Solutions

In our earlier paper (Niinimaki, Heikkurinen, & Schmidt, Performance of XML databases,

2019), we studied the query performance of XML databases with the same source documents

(medical articles) and same queries (using the XPath query language) as in this study. We

measured the performance of an XML enabled relational database and a native XML database

(query 3 refused to run on the native XML database). A summary of the results combined with the

results of this study are shown in Table 2 and illustrated in Figure 3.

Table 2: Query Times (in seconds) with XML and RDF based Databases

100k RDBMS-XML Native XML Python-RDF Integration
Sesame-

based

Q1 10.5 5.1 55.1 5.6 6.7

Q2 145.8 17.2 2349.1 19.4 32.8

Q3 45.5 60.4 3.9 10.6

200k RDBMS-XML Native XML Python-RDF Integration
Sesame-

based

Q1 53 18.3 102.4 7.1 7.5

Q2 889 74.6 5357.3 40.0 66.7

Q3 262 284 11.5 43.4

300k RDBMS-XML Native XML Python-RDF Integration
Sesame-

based

Q1 91.9 33.1 175.4 8.5 8.4

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 10

Q2 1731.6 133.7 8182.7 59.6 103.9

Q3 523.1 539.2 24.6 70.7

Figure 3: Query times with XML and RDF Storage Solutions

We can see that the native RDF databases most often provided better performance than

their alternatives. However, in our article (Niinimaki, Heikkurinen, & Schmidt, 2019; Oracle,

2016), in addition to XML databases we tested MongoDB, a popular “noSQL” database. For the

tests, we converted our documents into the JSON format used by MongoDB (for details, see

(Banker, 2011)) and rewrote the queries using MongoDB’s query language. We found the

performance generally very good, especially with aggregation queries. In Table 3 we summarize

the results, adding a further test with 1 million documents. Figure 4 illustrates the results. It must

be noted that MongoDB’s query language is quite different from SPARQL and therefore this

approach cannot be used for all RDF storage/query needs. For details about the expressiveness of

MongoDB’s query language, see Botoeva et al. (Botoeva, Calvanese, Cogrel, & Xiao, 2018).

Table 3: Query times with MongoDB

 100k 200k 300k 1M

Q1 24.5 55.1 84.9 1062

0 1000 2000 3000 4000 5000 6000 7000 8000

RDBMS-XML

Native XML

Python-RDF

Integration

Sesame-based

RDBMS-XML

Native XML

Python-RDF

Integration

Sesame-based

RDBMS-XML

Native XML

Python-RDF

Integration

Sesame-based

Q
1

Q
2

Q
3

Query times with XML and RDF based databases

300k 200k 100k

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 11

Q2 1.2 4.2 4.3 14.5

Q3 5.2 5.2 10.5 823.9

Figure 4: Query times with XML, RDF based databases and MongoDB

5. Summary and Discussion

In this paper, we have compared the query performance of RDF database packages. The

test data is based on XML files of medical articles, converted into an RDF XML form. The

documents originate from the U.S. National Institute of Health’s PubMed collection. The queries

represent “typical” tasks in an information system containing a database, namely:

Q1 List the publication year of all the documents in the database.

Q2 List the document ID’s of all documents containing word “genitalia” anywhere in the

document.

Q3 Find the article that is most cited by other articles in the collection.

Our test environment was a relatively high-end Linux server (a 24-core Xeon server with

32 GB memory). We tested three methods of storing RDF data persistently: a Python library with

0 1000 2000 3000 4000 5000 6000 7000 8000

RDBMS-XML

Python-RDF

Sesame-based

RDBMS-XML

Python-RDF

Sesame-based

RDBMS-XML

Python-RDF

Sesame-based

Q
1

Q
2

Q
3

Query performance of XML, RDF based databases and
MongoDB

1M 300k 200k 100k

http://grdspublishing.org/journals-PEOPLE-home

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 12

a BerkeyleyDB back-end and two native, commercial RDF database products. All the methods

were significantly faster than querying RDF files, but the native databases were faster than the

Python library. Additionally, we demonstrated that MongoDB can work efficiently as a storage of

some RDF-style data if the RDF structures are converted to JSON, and the SPARQL queries are

converted to MongoDB’s query language.

It’s worth noticing that though an RDF graph is a graph, there are “graph databases” that

are not meant for storing only RDF data. Notably, Neo4j presents their graph database simply as

a database that exposes a graph data model (Robinson, Webber, & Eifrem, 2015). The graph data

model in this case is “labeled property graph”. Labeled property graphs contain nodes and

relationships (arcs between nodes); nodes contain properties (key-value pairs); nodes can be

labeled with one or more labels; relationships are named and directed and have a start and end

node; and relationships can contain properties. Moreover, GraphQL, promoted by Facebook

(Hartig & Pérez, 2017) is a design of a query language and a query processor API that follows

some graph-style principles.

The limitations of this research are mainly related to our query model: we run simple

queries without parallelization and in a single computer and database node.

There are several interesting directions for future research. Scalability, especially when

processing queries in parallel is essential in modern database systems (Agrawal, El Abbadi, Das,

& Elmore, 2011). We are currently researching clustered database solutions for RDF. On the other

hand, large clusters use a lot of energy. Energy efficient query processing in clusters is another

area of our research.

Acknowledgements: The research activities described on this paper have received support from

the PROCESS project (https://www.process-project.eu/), that has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement No

777533.

References

Agrawal, D., El Abbadi, A., Das, S., & Elmore, A. J. (2011). Database scalability, elasticity, and

autonomy in the cloud. International Conference on Database Systems for Advanced

Applications (pp. 2-15). Springer. https://doi.org/10.1007/978-3-642-20149-3_2

http://grdspublishing.org/journals-PEOPLE-home
https://www.process-project.eu/
https://doi.org/10.1007/978-3-642-20149-3_2

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 13

Arenas, M., Gutierrez, C., & Pérez, J. (2009). Foundations of RDF databases. Reasoning Web

International Summer School (pp. 158-204). Heidelberg: Springer.

https://doi.org/10.1007/978-3-642-03754-2_4

Banker, K. (2011). MongoDB in action. Manning Publications.

Becker, C. (2008). RDF Store Benchmarks with DBpedia. Berlin: Freie Universitat Berlin.

Botoeva, E., Calvanese, D., Cogrel, B., & Xiao, G. (2018). Expressivity and complexity of

MongoDB queries. 21st International Conference on Database Theory. Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik. https://doi.org/10.3233/IA-190023

Broekstra, J., Kampman, A., & Van Harmelen, F. (2002). Sesame: A generic architecture for

storing and querying RDF and RDF schema. Proc. 1st International semantic web

conference (pp. 54-68). Sardinia: Springer. https://doi.org/10.1007/3-540-48005-6_7

Donohoe, P., Sherman, J., & Mistry, A. (2015). The Long Road to JATS. Journal Article Tag

Suite Conference (JATS-Con) Proceedings 2015.

Faye, D. C., & Curé, O. B. (2012). A survey of RDF storage approaches. Revue Africaine de la

Recherche en Informatique et Mathématiques Appliquées, 15, (pp 11-35).

Hartig, O., & Pérez, J. (2017). An initial analysis of Facebook’s GraphQL language. AMW 2017

11th Alberto Mendelzon International Workshop on Foundations of Data Management

and the Web. Montevideo.

Levandoski, J. J., & Mokbel, M. F. (2009). RDF data-centric storage. 2009 IEEE International

Conference on Web Services (pp. 911-918). IEEE. https://doi.org/10.1109/ICWS.2009.49

Miller, L., Seaborne, A., & Reggior, A. (2002). Three implementations of SquishQL, a simple

RDF query language. Proc. International Semantic Web Conference. Heidelberg,

Germany. https://doi.org/10.1007/3-540-48005-6_36

Morsey, M., Lehmann, J., Auer, S., & Ngomo, A. (2009). DBpedia SPARQL Benchmark -

Performance Assessment with Real Queries on Real Data. Proc. International semantic

web conference 2011, (pp. 1-24). Springer

Niinimaki, M., & Niemi, T. (2009). An ETL process for OLAP using RDF/OWL ontologies.

Journal of Data Semantics, XIII, 97-119. https://doi.org/10.1007/978-3-642-03098-7_4

Niinimaki, M., & Thanisch, P. (2019). Dataspace Management for Large Data Sets. In P. Vasant,

I. Litvinchev, & Marmolejo-Saucedo. J., Innovative Computing Trends and Applications

(pp. 13-21). Springer. https://doi.org/10.1007/978-3-030-03898-4_2

http://grdspublishing.org/journals-PEOPLE-home
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.3233/IA-190023
https://doi.org/10.1007/3-540-48005-6_7
https://doi.org/10.1109/ICWS.2009.49
https://doi.org/10.1007/3-540-48005-6_36
https://doi.org/10.1007/978-3-642-03098-7_4
https://doi.org/10.1007/978-3-030-03898-4_2

MATTER: International Journal of Science and Technology

ISSN 2454-5880

Available Online at: http://grdspublishing.org/ 14

Niinimaki, M., Heikkurinen, M., & Schmidt, J. (2019). Performance of XML databases.,

forthcoming.

Oracle. (2016). Oracle Spatial and Graph: Benchmarking a Trillion Edges RDF Graph. Oracle.

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph Databases (2nd ed.). Sebastopol, CA:

O'Reilly.

Schmidt, M., Schallhorn, T., Lausen, G., & Pinkel, C. (2009). SP2Bench: A SPARQL

performance benchmark. IEEE International Conference on Data Engineering, 42.

https://doi.org/10.1109/ICDE.2009.28

Steinbrook, R. (2005, April). Public Access to NIH-Funded Research. New England Journal of

Medicine(352), 1739-1741. https://doi.org/10.1056/NEJMp058088

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., & Wilkins, D. (2010). A comparison of a

graph database and a relational database: a data provenance perspective. Proceedings of

the 48th annual Southeast regional conference. ACM.

https://doi.org/10.1145/1900008.1900067

W3C. (2004). RDF Primer - W3C Recommendation.

W3C. (2008). SPARQL Query Language for RDF, W3C Recommendation.

W3C. (2014). RDF 1.1 N-Triples, A line-based syntax for an RDF graph. Retrieved from

https://www.w3.org/TR/n-triples/

http://grdspublishing.org/journals-PEOPLE-home
https://doi.org/10.1109/ICDE.2009.28
https://doi.org/10.1056/NEJMp058088
https://doi.org/10.1145/1900008.1900067
https://www.w3.org/TR/n-triples/

