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Abstract
In this paper, the explicit formulas are proposed to evaluate the Average Run Length (ARL) of

the Moving Average control chart (MA) for the first order integer-valued autoregressive with

Zero Inflated Poisson mode (ZIPINAR(1)). The performance of MA and Exponentially Weighted

Moving Average (EWMA) charts are compared. The results shown that, for 0 2,c the

performance of MA chart is superior to EWMA chart. Especially, for upward shifts the

performance of the MA chart gets better when the value of the span (w ) decreases. However, for

0 5,c  EWMA performs better than MA chart for all magnitudes of changes.
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Statistical Process Control Charts (SPC) are charts for manufacturing process control in

order to make consistent products within standards and adapt the manufacturing process to have

less variation. There are two types of control charts. The first is a variable control chart that

controls manufacturing process with measurable outcome such as diameter of strand, and

lifetime of light bulbs. There are several important variable control charts, such as X , R, and S

control charts with a main objective to control trends to the center of quality features. X control

chart is used for controlling the mean of quality features. R and S control charts are used for

controlling the distributions of quality features. The other type of control charts is an attribute

control chart which is controlling the attribute quality feature of products that is not related to the

standards of products and is not measurable such as blemish in clothes, broken light bulbs.

Attribute control charts, such as broken ratio control chart (p Chart) and defective per unit control

chart (c Chart), are popular to use for measuring quality. Then, a control chart that uses past history

as factors is Cumulative Sum Control Chart (CUSUM Chart) (Page, 1954). Robert, 1959 proposed

Exponentially Weighted Moving Average Control Chart (EWMA Chart) for detecting small

change ( 1.5 )  (Montegomery, 2009). In 2004, Khoo proposed a Moving Average Control

Chart (MA Chart) which calculated moving average from period of the value of the span ( ).w It

could detect small changes and can be used with both continuous and discrete distributions.

Generally, SPC is applied for manufacturing, computer science, telecommunications, financial

and economics, epidemiology, and environmental areas. Therefore, the objective for the control

charts is the ability to quickly detect changes in parameters of processes with minimum false

alarm rate when a process is in-control and maximum true alarm rate when a process is out-of-

control.

Countable process data mostly was found in the manufacturing process and the industrial

services because it is easily to happen when considering the occurrence in each area. Countable

data is useful for detecting changes in a process ranging from in-control process to out-of-control

process. When a process changes, the efficiency of the process is loss and therefore an efficient

tool is needed to detect the changes in order to make the process been back to normal. That tool

is a control chart because it can detect changes in countable data especially the data with Poisson

distribution. Therefore, a control chart that is suitable for this type of data is a c-control chart.

Sometimes, this control chart is applied to the relational data with non-Poisson distribution. C-
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control chart is interested in current data, not the past data. Therefore, this chart is able to detect

large changes but is not able to detect small changes (Montgomery, 2009). EWMA chart is

suitable for the data with Poisson count process (Borror, Montgomery & Runger, 2006) and

CUSUM chart is also good for the data with Poisson count process (Weiβ & Testik, 2009). Both

charts are good for detecting small changes. Most researchers studied independent countable data

but sometimes data can be autocorrelated. Therefore, a proposed model for autocorrelated data

was Poisson integer valued with first order autoregressive model (PINAR(1)), which was similar

to Autoregressive model with order 1 (AR(1)). AR(1) was a model for real number processing

but PINAR(1) used binomial thinning operator to transform real number into integer number or

countable data.

Al.Osh & Alzaid, 1987 developed PINAR(1) models by using binomial thinning operator.

Applications for this model were used for infection rate of patients, flow rate of waterfall,

number of insurance claims from insurance companies, and applications to queueing process

(Cardinal, Roy & Lambert, 1999, Bockenholt, 2003).

Presently, automatic machines are widely used in manufacturing processes such that

defective products are hardly happened. This causes the collected data for number of defectives

to be mostly zero and this is called zero inflated data. The PINAR (1) model is not suitable for

this type of data. Therefore, Jazi, Jones & Lai, 2012 introduced a model called Zero Inflated

Poisson with first order integer-valued autoregressive model (ZIPINAR(1)). Later, Rakitzis,

Weiβ & Castagliol, 2016 studied First‐order integer valued of AR processes with zero inflated

poisson, which was used with CUSUM charts. This model can track average changes in

manufacturing processes and the authors discussed the influence of zero inflated data to the

control chart.

The performance metric for control charts is Average Run Length ( )ARL , which consists to 2

types, in-control process or 0ARL and out-of-control process or 1ARL . In a normal case, when a

process is in control, 0ARL should have high value. However, when a process is out of control,

1ARL value should be minimum. There are several methods to find the ARL that are widely

used and give accurate results as follows.
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1) Monte Carlo Simulation (MC) is the method to calculate ARL under a specific event.

This method is easy to calculate and the results are used as accuracy checks with ARL from

other methods. However, the limitation for this method is long processing time.

2) Numerical Integration Equation (NIE) has limitation in finding the results from

integral equations and can be only used with continuous distribution process.

3) Markov Chain Approach (MCA) uses a transition probability matrix. The results from

this method are approximate values but this method uses less time than MC. This method can be

used for processes with both continuous and discrete distributions.

From the above methods, no research proposed an explicit formula for INAR(1) model under

zero inflated Poisson distribution. Therefore in this work, the explicit formula is proposed for

Moving Average Control Chart (MA) to detect changes in means process for ZIPINAR(1) model

and compares the efficiency of change detection between MA and EWMA charts.

2. The First Order Integer Valued Autoregressive with Zero Inflated Poisson

Model
The first order integer-valued autoregressive (INAR(1)) model is perfectly suited for

modeling count data. The INAR(1) model makes use of thinning operators for autocorrelated

process of count data. This thinning operator is generated by counting series of Bernoulli

distributed random variables. This model has many modifications and generalizations with

respect to their order and marginal distribution, and it is quite suitable for use in counting certain

random events. The INAR(1) model is defined by

1 ,  t ttN N (2)

where tN is the observable count at time ,t  is the first order integer-valued

autoregressive parameter, ( ) is the thinning operation at time t performed independently of

each other and  t is an innovation.

The ZIPINAR(1) model is the best fitting model for Poisson marginal distributions and

t follows the Zero Inflated Poisson distribution with mean (1 )
1
c 





then

( , )t Poi c  distribution with the zero inflated parameter ( ) where [0,1) . According to
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the above situation, it can be modeled as the INAR(1) model, in which the expectation and

variance of the ZIPINAR(1) model are

(1 )[ ]
1t
cE N 





 and 2

(1 )(1 c)V[ ]
(1 )t

cN   


  




Generally, the ZIPINAR(1) model could be changed in any unexpected occurrences, and

then the change-point model of this process can be described by the following. Assume 0c and

0 (1 )
1



c 
 are in control parameters, 1c and 1(1 )

1



c 
 are out of control parameters where  is

the magnitude of the shifts for out of control processes.

3. The Moving Average Control Chart for ZIPINAR(1) Model
A moving average control chart is based on unweighted moving average. Khoo, 2004

proposed the MA chart for number of nonconformities in an inspection unit of product. Suppose

individual observations, 1 2, ,...,N N are collected from ZIPINAR(1) model and be a sequence of

independent identically distribution. The value of the span w at time i is defined as

(Mongomery, 2009)

1

1

1 ;      

1 ; .

i

j
j

i i

j
j i w

N i w
i

MA
N i w

w



  

 
 
 




(3)

When the process is in-control, the mean and variance of moving average are

  (1 )
1i
cE MA 







(4)

and

 
 

 

2

2

(1 )(1 ) ,
1

(1 )(1 ) ,
1

i

c c i w
i

Var MA
c c i w

w

  


  


         
 

(5)

The control limit of the MA chart are given
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 

 

2

2

(1 ) 1 (1 )(1 ) ,
1 1

/
(1 ) 1 (1 )(1 ) ,
1 1

c c ck i w
i

UCL LCL
c c ck i w

w

   
 

   
 

    
     

 
         

(6)

where k is a coefficient of control limit and is determined based on a desired in-control 0ARL .

The ZIPINAR(1) process of MA chart will signal to out-of-control when iMA LCL or

.iMA UCL

4. Explicit formula for ARL of MA chart for ZIPINAR(1) model
In this section, the explicit formula of MA chart for ZIPINAR(1) model is proposed. The

explicit formula for evaluate 0ARL and 1ARL can be analytically derived by central limit

theorem. Given o.o.c. is out-of-control limit (Khoo, 2004, Chananet, Areepong & Sukparungsee,

2015).

Let ARL n then

1 1 ( . . . signal at time )P o o c i w
ARL n

 
( 1) ( . . . signal at time ).n w P o o c i w
n

     
(7)

According to the Eq. (7), the MA statistic for the case of signal to out-of control state is

replaced by

1 1

1

1
i i

w j jj j
i i

i

N N
P UCL P LCL

n i i
 



                        

 


1(2 1)
i

jj i w
w

Nn w P UCL
n w

  
               

 1 .
i

jj i w
w

N
P LCL

w
  

      

 (8)

Then, substitute the control limit of MA statistics from Eq. (6) into Eq. (8), which can be

rewritten as

 
1

2
1

1 (1 ) 1 (1 )(1 )
1 1

i
w jj

i

N c c cP k
n i i

   
 





                   




 
1

2

(1 ) 1 (1 )(1 )
1 1

i
jj

N c c cP k
i i

   
 


               


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 
1

2

( 1) (1 ) 1 (1 )(1 )
1 1

i
jj i w

Nn w c c cP k
n w w

   
 

  
                      



 
1

2

(1 ) 1 (1 )(1 ) .
1 1

i
jj i w

N c c cP k
w w

   
 

  
               

 (9)

The central limit theorem is used to derive the explicit formulas. Therefore, Eq. (9) can be

rewritten as

 
1

1
2

(1 )
1 1 1

(1 )(1 )
1

w i w

i

cUCL
P Z

ARL n c c
i




  






   
           

     
     


 

1

2

(1 )
1

(1 )(1 )
1

i w
cLCL

P Z
c c

i




  




 
        

    
   

 
2

2

(1 )
( 1) 1

(1 )(1 )
1

i w
cUCLn w P Z

n c c
w




  




  
                  

     
2

2

(1 )
1 .

(1 )(1 )
1

i w
cLCL

P Z
c c

w




  




 
       

    
  

(10)

According to Eq. (10), let

 
1

1

2

(1 )
1

(1 )(1 )
1

w i w

i

cUCL
S P Z

c c
i




  






  
       

    
   


 

1

2

(1 )
1

(1 )(1 )
1

i w
cLCL

P Z
c c

i




  




 
       

    
  

and

 
2

2

(1 )
1

(1 )(1 )
1

i w
cUCL

T P Z
c c

w




  




 
       

  
 

2

2

(1 )
1 .

(1 )(1 )
1

i w
cLCL

P Z
c c

w




  




 
    

   
  

Then, the explicit formulas of ARL for MA chart is rewritten by substituting S and T into

Eq. (10) as follows

1 1 ( 1)n wS T
n n n

 
 

1 ( 1).Sn w
T


  

As given that ,ARL n then
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   1
1 , 1.

2
S nARL w w
T


     (11)

When the process is in-control the 0ARL ARL , substitute the value of the parameter c

with 0.c The proposed explicit formulas of 0ARL of MA chart for ZIPINAR(1) can be rewritten

as

   

0 0
1

0 1 1
1 0 0 0 0

2 2

(1 ) (1 )
1 11

(1 )(1 ) (1 )(1 )
1 1

w i w i w

i

c cUCL LCL
ARL P Z P Z

c c c c
i i

 
 

     
 

  



     
                                

           



   
 

1

0 0

2 1
0 0 0 0

2 2

(1 ) (1 )
1 1 1 .

(1 )(1 ) (1 )(1 )
1 1

i w i w
c cUCL LCL

P Z P Z w
c c c c

w w

 
 

     
 



 

    
                             

         

(12)

When the process is out-of-control then 1ARL ARL , substitute the value of the parameter c

with 1.c Explicit formula of the 1ARL of the MA chart is

   

1 1
1

1 1 1
1 1 1 1 1

2 2

(1 ) (1 )
1 11

(1 )(1 ) (1 )(1 )
1 1

w i w i w

i

c cUCL LCL
ARL P Z P Z

c c c c
i i

 
 

     
 

  



     
                                

           



   
 

1

1 1

2 1
1 1 1 1

2 2

(1 ) (1 )
1 1 1 ,

(1 )(1 ) (1 )(1 )
1 1



 

    
                             

         

i w i w
c cUCL LCL

P Z P Z w
c c c c

w w

 
 

     
 

(13)

where 1c is the out-of-control parameter. Note that if 0c is changed, then 1c c where

 1 01 c c and the shift parameter ( ) as varied from 0.1, 0.3, 0.5, …,1.0, 1.5, 2.0.
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5. The Numerical Results

In this section, the explicit formulas for 0ARL and 1ARL of MA chart for ZIPINAR (1)

process are proposed. The numerical results for 0ARL and 1ARL of MA chart are calculated

from Eq. (12) and (13). In case of in-control parameter of MA chart, the value of the span (w )

were 2, 5, 10, 15 and 20. when in-control parameter value (ARL0) was 370, the coefficient

control limit (k) equal 3. In case of in-control parameter of ZIPINAR(1) process, c0 equal 2, 5

and  equal 0.1. In case of out-of-control parameter of ZIPINAR(1) process, c1 equal ( ) , c
0

1

and the parameter magnitude values of  are 0.1, 0.3, 0.5,…, 1.0, 1.5, 2.0.

From Table 1 and 2, when c
0 = 2, MA chart shows better performance than EWMA chart

in every level changed. For MA chart, the observation is that when the change level is increased,

the optimal of w value is decreased. In contrast from Table 3 and 4, when c
0 =5, EWMA chart

performs better than MA chart for all levels of changes. These results show that the performance

of charts depends on the data characteristic or in control parameters, i.e. , ,c  
0 .

Table 1: ARL comparison of the MA chart using explicit formulas with the EWMA chart for
ZIPINAR(1) model given c=2 0.5  0.1 

Shift
MA EWMA

L=4.23125w=2 w=5 w=10 w=15 w=20

0

0.1

0.3

0.5

0.7

0.9

1.0

1.5

2.0

370.398

289.492

179.123

115.075

77.501

54.709

46.726

24.367

15.136

370.398

284.634

160.409

92.498

56.933

37.631

31.365

15.464

9.739

370.398

276.971

136.741

70.040

40.285

26.054

21.776

11.800

8.537

370.398

269.814

119.543

57.296

32.715

21.907

18.808

11.872

9.611

370.398

263.128

106.737

49.659

29.185

20.719

18.366

13.158

11.314

370.794 1.498*

343.297 1.393

149.785 0.711

65.488 0.271

40.752 0.144

30.133 0.095

27.128 0.081

17.979 0.046

13.479 0.032

*is standard deviation of ARL
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Table 2: ARL comparison of the MA chart using explicit formulas with the EWMA chart for
ZIPINAR(1) model given c=2 0.7  0.1 

Shift
MA EWMA

L=3.3473w=2 w=5 w=10 w=15 w=20

0

0.1

0.3

0.5

0.7

0.9

1.0

1.5

2.0

370.398

291.152

186.406

125.354

88.339

64.931

56.459

31.516

20.379

370.398

288.670

175.890

111.061

73.803

51.677

44.041

23.071

14.639

370.398

284.674

160.954

93.958

58.506

39.446

33.258

17.532

11.838

370.398

280.849

148.644

81.579

49.465

33.251

28.216

16.047

11.887

370.398

277.189

138.424

72.997

43.961

30.118

25.964

16.262

13.025

370.049 1.312*

248.793 1.012

103.106 0.495

57.032 0.229

38.044 0.144

28.700 0.103

25.525 0.090

16.277 0.085

12.086 0.040

*is standard deviation of ARL

Table 3: ARL comparison of the MA chart using explicit formulas with the EWMA chart for
ZIPINAR(1) model given c=5 0.5  0.1 

Shift
MA EWMA

L=5.0643w=2 w=5 w=10 w=15 w=20

0

0.1

0.3

0.5

0.7

0.9

1.0

1.5

2.0

370.398

335.314

273.680

223.693

182.320

149.797

136.134

87.048

58.794

370.398

333.884

264.613

205.771

159.202

123.711

109.439

62.294

38.789

370.398

331.554

250.863

182.271

131.448

95.934

82.589

42.912

26.022

370.398

329.289

238.630

163.833

112.320

78.968

67.096

34.260

21.659

370.398

327.088

227.717

149.145

98.672

68.035

57.580

30.218

20.477

370.024 1.522*

306.627 1.533

216.892 1.063

82.425 0.333

45.920 0.150

32.911 0.094

29.003 0.078

18.683 0.044

13.782 0.031

*is standard deviation of ARL

Table 4: ARL comparison of the MA chart using explicit formulas with the EWMA chart for
ZIPINAR(1) model given c=5 0.7  0.1 
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Shift
MA EWMA

L=3.60779w=2 w=5 w=10 w=15 w=20

0

0.1

0.3

0.5

0.7

0.9

1.0

1.5

2.0

370.398

335.826

277.077

229.985

192.233

161.897

149.010

101.362

72.260

370.398

335.153

272.666

221.113

179.626

146.701

132.940

84.030

56.409

370.398

334.049

265.697

207.890

162.096

127.062

112.922

65.879

42.139

370.398

332.968

259.178

196.357

147.986

112.486

98.644

55.124

35.008

370.398

331.911

253.080

186.264

136.499

101.458

88.214

48.496

31.383

370.281 1.427*

260.068 1.139

94.069 0.456

47.398 0.208

30.629 0.127

22.816 0.090

20.225 0.078

13.009 0.048

9.482 0.034

*is standard deviation of ARL

6. Conclusion

The explicit formulas of the 0ARL and 1ARL were derived of the Moving Average chart

for the ZIPINAR(1) process. The suggested formulas are easy to calculate and program.

Obviously, the computational time for evaluating the suggested formulas is much less 1 second.

Thus, it is suggested that the explicit formulas of the ARL of CUSUM chart can be applied to

real data, empirical data, and real-world situations applications such as in economics, finance,

environmental, etc.
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